

- ASTM C109 / C109M-16a, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or (50-mm) Cube Specimens), ASTM International, West Conshohocken, PA,
- Motrats (Using 2-rs, or journing 2-rs) 2016, www.astm.org ASTM C150/ C150W-18, Standard Specification for Portland Cement, ASTM International, West Conshohocken, PA, 2018, <u>www.astm.org</u>

- .
- .
- .

- ASTM C150 / C150/ L150/ L150/

Agenda

Supplementary Cementitious Materials (SCMs)

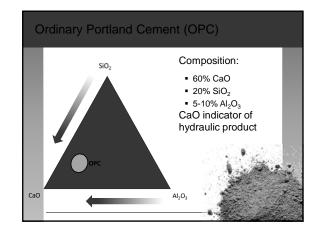
- Introduction to SCMs
- Slag Cement:
- Production, Specification, and Use in Concrete
- Fly Ash:
 - Production, Specification, and Use in Concrete
- Silica Fume:
- Production, Specification, and Use in Concrete

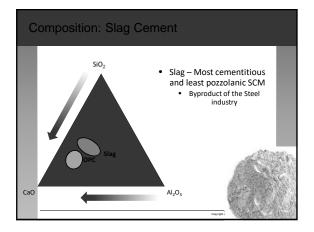
What are SCMs?

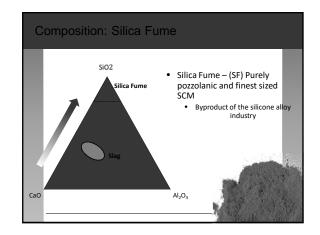
Supplementary Cementing Materials (SCMs)

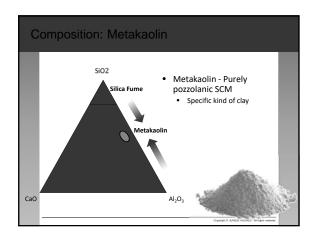
 A material that, when used in <u>conjunction</u> with portland cement, contributes to the properties of the hardened concrete through hydraulic or pozzolanic activity.

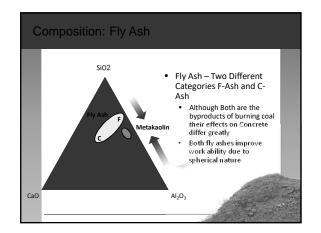
- From left to right:
- Fly ash (Class C)
- Metakaolin (calcined clay) Silica fume ×
- Fly ash (Class F)
- Slag Calcined shale

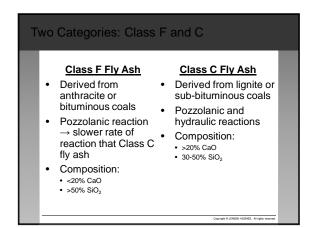

Two Categories of SCMs

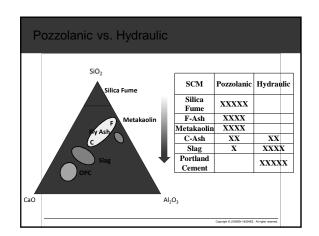

Pozzolanic - a siliceous or alumnino-siliceous material, chemically reacts at ordinary temperatures with calcium hydroxide released by hydration products of portland cement to form cementing properties.


Does <u>NOT</u> in itself produce hydration products


Hydraulic - a material that reacts chemically with water to form compounds that have cementing properties


· Forms hydration products in itself e.g. portland cement





Agenda

Supplementary Cementitious Materials (SCMs)

- Introduction to SCMs
- Slag Cement:
 Production, Specification, and Use in Concrete
- Fly Ash:
- Production, Specification, and Use in Concrete
- Silica Fume:
 Production, Specification, and Use in Concrete

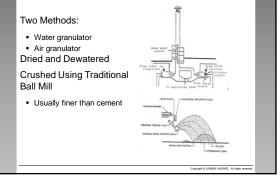
Terminology

<u>Slag Cement</u> Ground Granulated Blast Furnace Slag (GGBFS) Granulated blast furnace slag (GBFS)

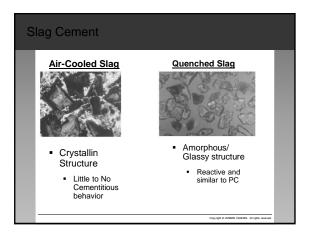
Manufacturing

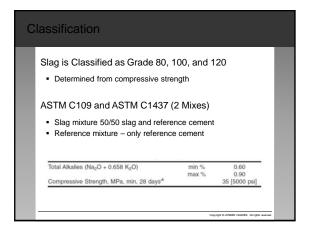
Byproduct of iron and steel manufacturing process Materials fed into furnace:

 coke, natural gas, oxygen and pulverized coal and also limestone as a fluxing agent


Two Products:

- Molten iron metal
- Molten blast furnance slag


Slag Run-off from an Open Hearth Furnace


Quenching Molten Slag and Grinding

Slag Cement Glassy granular material formed when molten blastfurnace slag is rapidly chilled, as by immersion in water Non-metallic product, consisting of silicates and aluminosilicates of calcium and other bases Mass (%) Component CaO 30-50 SiO 28-38 AI_2O_3 8-24 MgO 1-18

lassification			
Slag Activity	/ Index, % = (SP / F	P) X 100	
U	ompressive streng ortar cubes, Mpa	th of	
P = Averag	e compressive stre	ength of	
-	iortar cubes, MPa	-	
	Average of Last Five Consecutive Samples	Any Individual Sample	
Slag Activity Index			
28-Day Index, min.%			
Grade 80	75	70	
Grade 100	95	90	
Grade 120	115	120	
		Copyright © JENSEN HUGHES	11 cinhin senerue

PI	nysical Requirements		
		Item	
	Fineness:		
	Amount retained when wet screened on a 45-µm Sieve, max. %	20	
	Specific surface by air permeability, Test Methods C204 shall be determined and reported although no limits are requried.		
	Air Content of Slag Mortar, max. %	12	
		richt © JENGEN HUGHES. Al richts manned.	
		and the second second second second	

Chemical Requirements

Composition Depends mainly on the composition blast furnace oxides

Variability between sources exist, but relatively low within the same plant

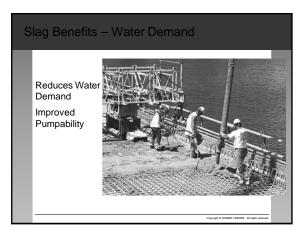
ASTM C989 Limits

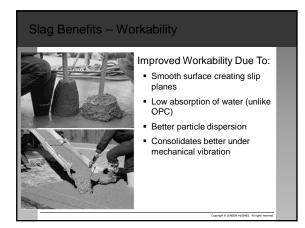
- Sulfide sulfur content (S), to 2.55
- Determined per ASTM C114

Typical Dosage

Application	Dosage (% by wt.)
Exterior Flatwork	≤ 35%
General Usage	35 to 50%
Mass Concrete	60 to 80%
Sulfate Resistance	
ASTM C150 – Type II Equivalent	≥ 35%
ASTM C150 – Type V Equivalent	≥ 50%
Marine Exposure	> 50% < 80%

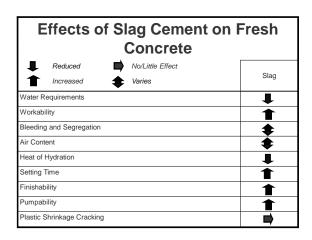
Mixture Proportioning

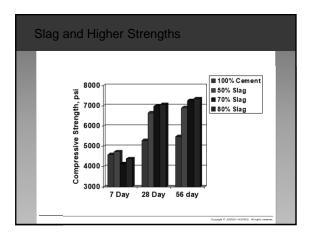

Concrete Properties

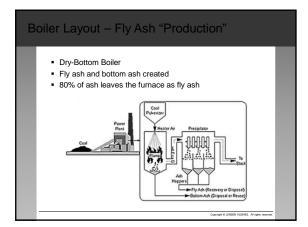

- Typical Dosage 35-50%
- w/c ratio w/(cement + slag) ratio
- Water Demand 1 to 5% lower

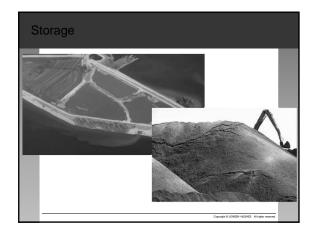
Admixture dosage

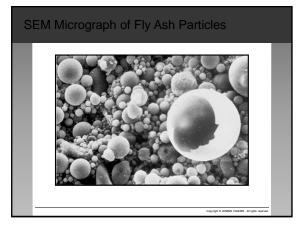
- Similar for air-entraining admixtures
- Slightly lower for other admixtures

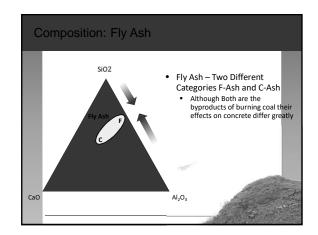

SG 2.90



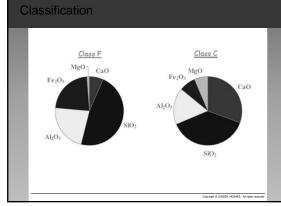






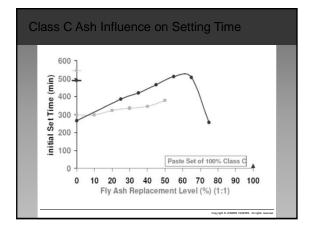

	Reduced No/Little	<i>Effect</i> Slag
Streng	th Gain	•
Abrasi	on Resistance	—
Freeze	-Thaw and Deicer-Scaling Resista	nce 📦
	Shrinkage and Creep	
urying	om mago ana oroop	
	ability	•
Perme		1 1
Perme Alkali-	ability	
Perme Alkali-	ability Silica Reactivity ate Resistance	

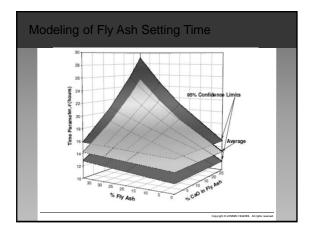
Agenda What is Fly Ash? Supplementary Cementitious Materials (SCMs) Introduction to SCMs Introduction to SCMs Fly ash is the <u>finely-divided</u> residue produced in coal-fired <u>electric power</u> generating plants as an industrial by-product of the combustion of ground or powdered <u>coal</u>. Slag Cement: Production, Specification, and Use in Concrete Silica Furne: Silica Furne: Production, Specification, and Use in Concrete The concrete



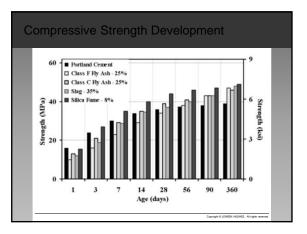
Two Categories: Class F and C Class F Fly Ash Class C Fly Ash <u>Class F</u> Derived from anthracite • Derived from lignite or MgO] CaO or bituminous coals sub-bituminous coals Fe₂O₃ Pozzolanic and hydraulic Pozzolanic reaction \rightarrow ٠ slower rate of reaction reactions that Class C fly ash • Composition: SiO₂ + Al₂O₃ + Fe₂O₃ ≥ 50% >20% CaO Composition: SiO SiO₂ + Al₂O₃ + Fe₂O₃ ≥ 70% Al₂O 30-50% SiO₂

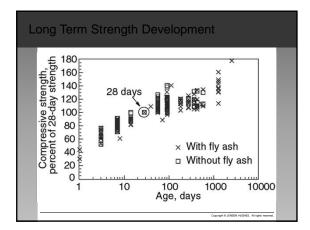
Fly Ash and Setting Time

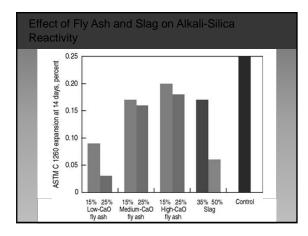

Fly ash slows setting time of concrete


• <20% CaO

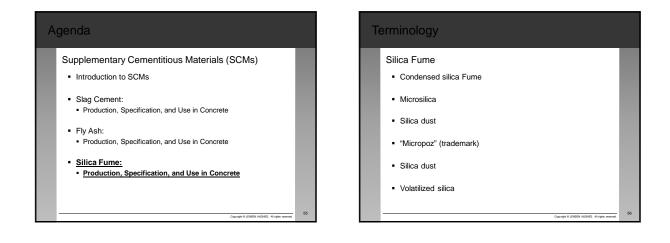
>50% SiO₂

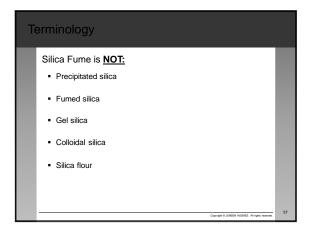

Class C fly ash (at typical dosages) tends to retard more than Class F fly ash (work is needed to understand the mechanism)

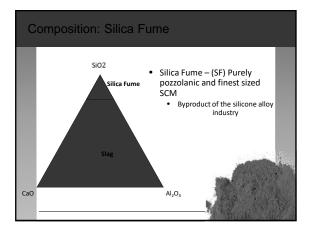

Effect of F	ily Ash c	on Conc	rete: Se	etting Ti	me
Fly ash test r	nixtures	Setting hr:r		Retard relative to hr:r	o control,
		Initial	Final	Initial	Final
Average of:	Class C	4:40	6:15	0:30	0:45
	Class F	4:50	6:45	0:35	1:15
Control m	ixture	4:15	5:30	-	-
				Copyright © JENSEN HUGHES	Al right susmut.

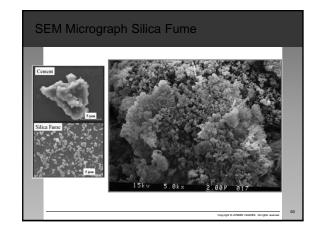


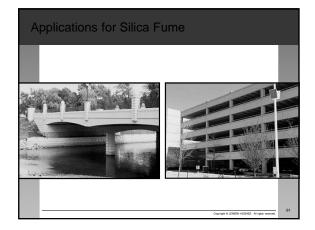
Effe	Effects of Supplementary Comenting Material on Freshly Mixed Concrete		
	Reduced	No/Little Effect	Fly ash
Water R	<i>Increased</i> Requirements	Varies	
Workal			1 1
	ig and Segregat	ion	L.
Air Con Heat of	tent Hydration		↓ ↓
Setting			Ť
Finisha			1
Pumpal Plastic	bility Shrinkage Crac	king	

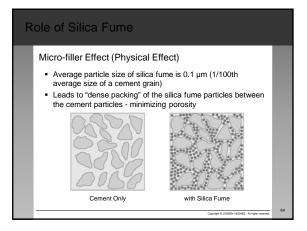


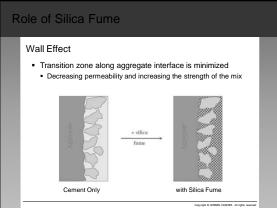





∎	Reduced Increased	No/Little Effect	Fly ash
Streng	th Gain		•
Abrasi	on Resistance		-
Freeze	Thaw and Deice	r-Scaling Resistance	
Drying	Shrinkage and (Greep	•
Drying Perme		Creep	D
Perme			D
Perme Alkali-	ability		
Perme Alkali-	ability Silica Reactivity Ite Resistance		

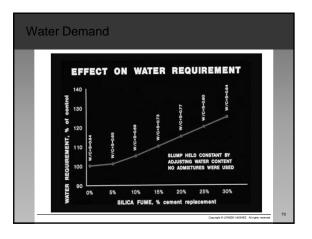


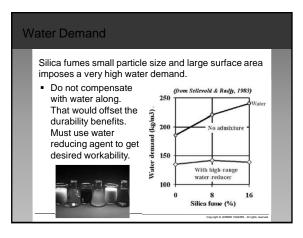

Silica Fume

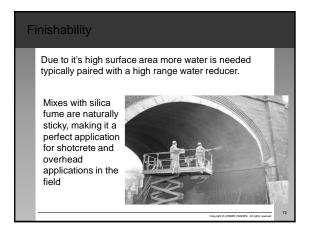

Production

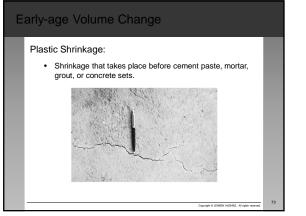
 Silica fume is the ultra fine non-crystalline silica produced in electric-arc furnaces as an industrial by-product of the production of silicon metals and ferrosilicon alloys.

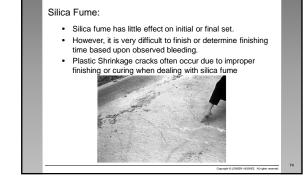
н	low it Helps		
	 How it helps 100X smaller than avg. cement particle Reduces permeability of hardened concrete Less segregation and bleeding Used to control reactive aggregates 	Implications • Reduced workability HRWR (1-2 times) • Requires more water • Requires more air (1-4 times) • "Sticky" mixes • Increased cost	63
		Copyright © JENSEN HUGHES. All rights reserved.	

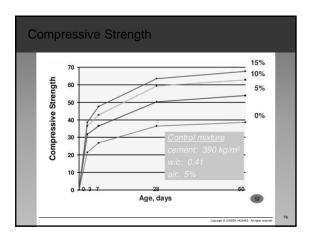


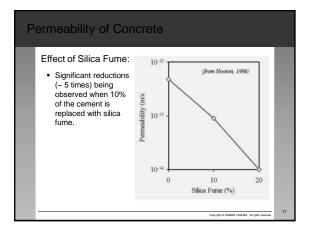

Limit Silica Fume Dosage to 6-8% by volume • ACI 318 limit is <= 10% based on freeze thaw resistance</td> • Increased cost of concrete • Requires more admixtures to compensate impact on workability • HRWR • Air Entrainment

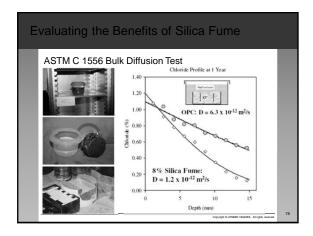

<section-header><section-header><section-header><section-header><list-item><section-header>











Early-age Volume Change (1/2)

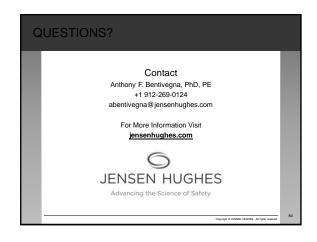
Effects of Silica Fume	
on fresh concrete	
Reduced No/Little Effect	
1 Increased 🔹 Varies	Silica fume
Water Requirements	1
Workability	↓
Bleeding and Segregation	₽
Air Content	₽
Heat of Hydration	\$
Setting Time	•
Finishability	\$
Pumpability	1
Plastic Shrinkage Cracking	1

Ternary Blends

Г

The blending of 2 or more SCM's can provide additional benefit to the concrete material fresh and hardened properties

- Silica fume + Class F Fly Ash
 - The silica fume compensates for the low early-strength of Class F Fly Ash
- Fly Ash + Slag + Silica Fume
 - Fly Ash and Slag increase long-term strength development
 Fly Ash and Slag help offset the increased water demad of the silica fume


- Silica fume + Class C Fly Ash or Slag
 - The silica fume compensates for high quantities of Class C Ash or Slag typically required for ASR resistance
- Class F Fly Ash and Slag with Silica Fume
 - Fly Ash and Slag offset the high heat of hydration created by silica fume

Effects of SCM	s on f	resh	cond	rete
Reduced No/Little Effect	Fly ash	Slag	Silica fume	Nat. Pozzolans
Water Requirements	₽	₽	1	•
Workability	1	1	₽	1
Bleeding and Segregation	₽	\$	₽	
Air Content	₽	•	₽	
Heat of Hydration	₽	₽	\$	₽
Setting Time	1	1	D	
Finishability	1	1	•	1
Pumpability	1	1	1	1
Plastic Shrinkage Cracking			1	

Effects of Supplementary Cementing Materials on Hardened Concrete

Reduced No/Little Effect	Fly ash	Slag	Silica fume	Nat. Pozzolans
Strength Gain	•	+	1	•
Abrasion Resistance	•			
Freeze-Thaw and Deicer- Scaling Resistance	•		•	-
Drying Shrinkage and Creep	•			
Permeability	₽	-	₽	₽
Alkali-Silica Reactivity	₽	-	₽	₽
Chemical Resistance	1	1	1	1
Carbonation	•			
Concrete Color	\$	\$	•	\$

ASTM C 618	Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Minera Admixture in Concrete
ASTM C 989	Standard Specification for Ground Granulated Blast-Furnace Slag for Use in Concrete and Mortars
ASTM C 1240	Standard Specification for Silica Fume for Use as a Mineral Admixture in Hydraulic-Cement Concrete, Mortar, and Grout
ASTM C 595	Standard Specification for Blended Hydraulic Cements Has PC+SCM grounded and blended together
ASTM C 1157	Standard Performance Specification for Blended Hydraulic Cement

